
- Karnaugh Map Simplification of SOP

expressions

 The process that results in an expression containing the fewest

possible terms with the fewest possible variables is called

minimization. After an SOP expression has been mapped , a

minimum SOP expression is obtained by grouping the 1's and

determining the minimum SOP expression from the map.

 grouping the 1's : you can group 1s on the Karnaugh map

according to the following rules by enclosing those adjacent cells

containing 1s.the goal is to maximize the size of the groups and to

minimize the number of groups.

1. A group must contain either 1,2,4,8 , or 16 cells,which are

all powers of two. In the case of a 3-variables map,2^3=8

cells is the maximum group.

2. Each cell in a group must be adjacent to one or more cells

in that some group, but all cells in the group do not have to

be adjacent to each other.

3. always include the largest possible number of 1s in a group

in accordance with rule 1.

4. Each1 on the map must be included in at least one group.

The 1s already in a group can be included in another group

as long as the overlapping groups include non common 1s.

Example :group the 1s in each of the Karnauph maps in the

following 2-varable map.

2-variable map

 B

A 0 1

 B

A 0 1

0 1 0 1

1 1 1 1 1

 Solution: the grouping are shown the next figure. In same cases,

there may be more than one way to group the1s to form maximum

grouping .

2-variable map

 B

A 0 1

 B

A 0 1

0 1 0 1

1 1 1 1 1

Example :group the 1s in each of the Karnauph maps in the

following 3-varable map.

3- variable map

C

AB 0 1

 C

AB 0 1

00 1 00 1 1

01 1 01 1

11 1 1 11 1

10 10 1 1

Solution: the grouping are shown the next figure. In same cases, there

may be more than one way to group the1s to form maximum grouping

.

3- variable map

C

AB 0 1

 C

AB

0

1

00 1 00 1 1

01 1 01 1

11 1 1 11 1

10 10 1 1

Example :group the 1s in each of the Karnauph maps in the

following 4-varable map

4-variable map

CD

AB
00 01 11 10

 CD

AB
00 01 11 10

00 1 1 00 1 1

01 1 1 1 1 01 1 1 1

11 11 1 1 1

10 1 1 10 1 1 1

Solution: the grouping are shown the next figure. In same cases, there

may be more than one way to group the1s to form maximum grouping

.

4-variable map

CD

AB
00 01 11 10

 CD

AB
00 01 11 10

00 1 1 00 1 1

01 1 1 1 1 01 1 1 1

11 11 1 1 1

10 1 1 10 1 1 1

- Determining the minimum SOP Expression From the

map

 When all the 1s representing the standard product terms in an

expression are properly mapped and grouped, the process of determining

thee resulting minimum SOP expression begins.

The following rules ate applied to find the minimum product terms and the

minimum SOP expression:

1. Group the cell that have 1's. Each group of cells containing 1's creates

one product item composed of all variables that occur in only one form

(either uncomplemented or complemented) within the group.

Variable that occur both uncomplemented and

complemented within the group are eliminated . these are

called contradictory variables

2. Determine the minimum product term for each group.

a. For a 2-Variable map

(1) A 1-cell group yields a 2-variable product term .

(2) A 2-cell group yields a 1-variable product term.

(3) An 4-cell group yields a value of 1 for the expression.

b. For a 3-Variable map

(1) A 1-cell group yields a 3-variable product term .

(2) A 2-cell group yields a 2-variable product term.

(3) A 4-cell group yields a 1-variable product term.

(4) An 8-cell group yields a value of 1 for the

expression

c. For a 4-Variable map

(1) A 1-cell group yields a 4-variable product term.

(2) A 2-cell group yields a 3-variable product term.

(3) A 4-cell group yields a 2-variable product term.

(4) An 8-cell group yields a 1-variable term.

(5) A 16-cell group yields a value of 1 for the expression

.

3. When all the minimum product terms are derived from the Karnaugh

map, they are summed to form the minimum SOP expression,

Example : Determine the product terms for the Karnaugh map in figure

bellow , and write the resulting minimum SOP expression.

CD

AB
00 01 11 10

00 1 1 CA

01 1 1 1 1

11 1 1 1 1 A

10 1

 DCA

Solution: Eliminate variables that are in a grouping in both complemented

and uncomplemented forms. In the above figure ,

 the product term for the 8-cell group is B because the cells withen that

group contain both A and A , C and C , and D and D , which are

eliminated.

 The 4-cell group contains DandDBB ,,, , leaving the variables A

and C. which form the product term CA .

 The 2-cell group contains B and B , leaving variables A , C , and D

which form the product term DCA .

Notes: how overlapping is used to maximize the size of the groups. The

resulting minimum SOP expression is the sum of these product terms:

DCACAB

 Home work

 for the Karnagh map in the above example , add a 1 in the

lower right cell (1010) and determine the resulting SOP

expression.

Example : Determine the product terms for the Karnaugh map in two figures

bellow , and write the resulting minimum SOP expression.

Figure(a) Figure(b)

 DCA B

C

AB 0 1

 C

AB

0
1

00 1 00 1 1

01 1 BC 01 1 CA

11 1 1 11 1 CA

10 10 1 1

 AB

Solution: the resulting minimum product term for each group shown in

figure(a) and (b) are:

(a) CBABCAB

(b) ACCAB

Example : Determine the product terms for the Karnaugh map in two figures

bellow , and write the resulting minimum SOP expression.

Solution: the resulting minimum product term for each group shown in

figure(c) and (d) are:

(c) DBACABA

(d) CBCBAD

Figure (c) Figure (d)

 CA BA D

CD

AB 00 01 11 10

CD

AB

00 01 11 10

00 1 1 00 1 1

01 1 1 1 1 01 1 1 1

11 11 1 1 1

10 1 1 10 1 1 1

DBA
 CB CBA

Example: Use a Karnaugh map to minimize the following standard SOP

expression:

CBACBACBABCACBA

Solution: the binary values of the expression are

101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells are shown in the

following figure.

 C

AB

0
1

00 1 1 CA

01 1

11

10 1 1 B

The resulting minimum SOP expression is : CAB

 Home work

 Use the Karnaugh map to minimize the following SOP expression:

ZYXWYZWZYXWYZXWZYXW

DCBADABCDBCADCBACDBACDBADCABDCBADCB

2

1

 Mapping Directly from the Truth Table

 You have seen how to map a Boolean expression; now you will learn how to go

directly from a truth table to a Karnauph map. Recall that a truth table gives the output

of a Boolean expression for all possible input variable combination.

 An example of a Boolean expression and its troth table representation is shown in the

next figure. Notice in the truth table that the output X is 1 for four different input

variable combinations.

ABCCABCBACBAX

Input Output

A B C X

0 0 0
1

 C

AB
0 1

0 0 1 0 00 1

0 1 0 0 01

0 1 1 0 11 1 1

1 0 0 1 10 1

1 0 1 0

1 1 0 1

1 1 1 1

 The 1s in the output column of the truth table are mapped directly onto a Karnaugh

map into the cells corresponding to the values of the associated input variable

combinations.

 Notes :In the above figure you can see that the Boolean expression , the truth table

, and the Karnaugh map are simply different ways to represent a logic function.

 "Don’t care " Condition

 Sometime a situation arises in which some input variables combinations are not

allowed. For example , recall tat in BCD code covered in previous sections , there are

six invalid combinations: 1010 ,1011 ,1100,1101 , and 1111.

 Since these un allowed states will never occur in an application involving the BCD

code, they can be treated as "Don’t care" terms with respect to their effect on the

output. That is , for these "don’t care " terms either a 1 or a 0 may be assigned to the

output; it really does not matter since they will never occur.

 The "don’t care" terms can be used to advantage on the Karnaugh map. The

figure bellow shows that for each "don’t care" term, an X is placed in the cell. When

grouping the 1s , the Xs can be treated as 1s to make a larger grouping or as 0s if they

cannot be used to advantage. The larger a group , the simpler the resulting

term will be.

Input Output

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

 1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

(a) Truth Table

Don’t cares

CD

AB
00 01 11 10

00

01 1 BCDA

11 X X X X BCD

10 1 1 X X

 DBA A

(b)without "don’t care" Y= BCDACBA ,with "don’t care" Y= BCDA

Notes: the truth table (a) describe a logic function that has a 1 output only when the

BCD code for 7 ,8 , or 9 is present on the inputs. If the "don’t care" are used as 1s the

resulting expression for the function is BCDA , a indicated in part(b). if the "don’t

cares" are not used as 1s ,the resulting expression is BCDACBA ; so you can see the

advantage of using "don’t care" terms to get the simplest expression.

6- Combinational Logic Analysis

 Combinational circuit is circuit in which we combine the different gates(AND ,OR
,NAND ,NOR ,XOR ,XNOR ,NOT ,..) in the circuit for example encoder, decoder,
multiplexer , demultiplexer and any circuit build bay any combinations of theses gates .
Some of the characteristics of combinational circuits are following.

 The output of combinational circuit at any instant of time, depends only on
the levels present at input terminals.

 The combinational circuit do not use any memory. The previous state of
input does not have any effect on the present state of the circuit.

 A combinational circuit can have n number of inputs and m number of

outputs.

 - Combinational circuit black Diagram

- Implementing Combinational Logic

 In this section , examples are used to illustrate how to implement a logic circuit

from a Boolean expression or a truth table. Minimization of a logic circuit using the

methods covered in previous section.

 From a Boolean Expression to a logic circuit

 Let's examine the following Boolean expression:

X=AB +CDE

 A brief inspection shows that this expression is composed of two terms , AB

and CDE , with a domain of five variables. The first term is formed by ANDing

A with B, and the second term is formed by ANDing C,D, and D. the two terms

are then ORed to form the output X . These operations are indicated in the

structure of the expression as follows:

X=AB +CDE

Homework: Draw the logic circuit for the above Boolean expression

Example: let's implement the following expression:

)(EFDCABX

Solution:

)(EFDCABX

AND

OR

AND

AND

NOT

OR

Notes: Unless an intermediate term, such as EFDC , is required as an

output for some other purpose, it usually best to reduce a circuit to its SOP form

in order to reduce the overall propagation delay time .the expression is

converted to SOP as follows, ABEFDABCEFDCAB)(.

Homework: Draw the logic circuit for the above SOP Boolean

expression

 From a Truth Table to a Logic Circuit

 If you begin with a truth table instead of an expression, you can write the

SOP expression from the truth table and then implement the logic circuit. The

table bellow specifies a logic function.

Input Output
Product

term
A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 BCA

1 0 0 1 CBA

1 0 1 0

1 1 0 0

1 1 1 0

The Boolean SOP expression obtained from the truth table by ORing the

product terms for which X=1 is X= BCA + CBA

Homework:

1- Draw the logic circuit for the above SOP Boolean expression .

2- Develop a logic circuit with four input variable that will only

produce a 1 output when exactly three input variables are 1s.

 Function Of Combinational Logic

 As we mention above , Combinational circuit is circuit in which we combine the

different gates, We're going to elaborate few important combinational circuits as

follows.

1- Basic Adders

 Adders are important in computers and also in other types of digital systems

in which numerical data are processed. An understanding of basic adder operation

is fundamental to the study of digital systems. In this section, the half-adder and

the full-adder are introduced.

 Half - Adder (HA)

 Half adder is a combinational logic circuit with two input and two output. The
half adder circuit is designed to add two single bit binary number A and B. It is the
basic building block for addition of two single bit numbers. This circuit has two
outputs carry and sum.

Block Diagram

Truth Table

Input Outputs

A B)(s C0

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

Binary digits
to be added

Sum
Carry

out

XOR AND

Circuit Diagram

Now, what is the Boolean expression needed for the (C0) output ?

 the Boolean expression is C0=A.B which represent AND gate

Now, what is the Boolean expression needed for the ()(s) output ?

 The Boolean expression I s BABAs ..)(which represent XOR gate.

We Can also simplify HA function using Karnough Map.

 A
B

0 1

 A
B

0 1

0 1 0

1 1 1 1

BAS

BABAs

C0=A.B

 Note: the half-adder circuit adds only the LSB column (1s column) in a binary addition
problem.

 Full – Adder (FA)

Full adder is developed to overcome the drawback of Half Adder circuit. It
can add two one-bit numbers A and B, and carry c. The full adder is a three
input and two output combinational circuit.

Block Diagram

Truth Table
 The full adder must be used when it possible to have an extra Carry input
,then the full adder has three inputs: A , B , and Cin. These three inputs must

be added to get the)(s and C0 output .

Input Outputs

A B Cin)(s C0

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

A + B + Cin Sum
Carry

out

)(s =),,,(7421

C0 =),,,(7653

We can simplify FA Function using K-Map

)(s =),,,(7421
 C

AB

0
1

)B(.

)(

in

inin

inin

CA

CBCBA

CBACBA

00 1

01 1

11 1

10 1

)B(.

).(

in

inin

inin

CA

CBBCA

CBAABC

Note : Let X=(B Cin) then

 inCBAXAXAXA

 By the same way

C0 =),,,(7653
 C

AB

0 1

 BCin

 ACin

00

01 1

11 1 1

10 1

AB

 inino ACABBCC

Circuit Diagram

Homework:

How to construct Full -Adder from two Half –Adders ?

 N- bit Adder

The Full Adder is capable of adding only two single digit binary number
along with a carry input. But in practical we need to add binary numbers which
are much longer than just one bit. To add two n-bit binary numbers we need to
use the n-bit parallel adder. It uses a number of full adders in cascade. The carry
output of the previous full adder is connected to carry input of the next full
adder.

 4 Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four bit words
A and B. Hence Full Adder-0 is the lowest stage. Hence its Cin has been
permanently made 0. The rest of the connections are exactly same as those of
n-bit parallel adder are shown in fig. The four bit parallel adder is a very
common logic circuit.

Block Diagram

Note : we can replace the first full adder with Half adder

2- Subtractors

 half subtractors

You will find that adders and suntractors are very similar. You use half

subtractors and full subtractors just as you use half and full adders. Converting

the rules to truth table from as in bellow .

On the input side,(B) is subtracted from(A) to give output Di(Diffrence). If B is

larger then A , we need a borrow , which is shown in the column labeled Bo (borrow

out).

Inputs Outputs

A B Di B0

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

A - B Difference
Borrow

out

* form the truth table, we can determine the Boolean expression for the half-

subtractor.

 The expression for the Di column is : Di= A B , this is the same as for the half

adder .

The Boolean expression for the Bo column is BABo , , combining these two

expression in a logic diagram gives the logic circuit for a half subtractor.

Block Diagram

 Full subtractors

 When you subtract several columns of binary digits, you must take into

account the borrowing . the truth table that describe the full subtractors as

fellow:

Input Outputs

A B Bin Di B0

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

Half

subtractor
B

A Di

Bo

1 1 0 0 0

1 1 1 1 1

A - B - Bin Di Bo

You might keep track of the differences and borrow . to solve such problem we

must use full subtractor which has pervious truth table that considers all the

possible combinations in Binary subtraction .

Block Diagram

Logic circuit

 Parallel Subtractors

 Half and full subtractors are wired together to perform as a parallel

subtractor , foe example , to subtract binary number B3 B2 B1 B0 from binary

number A3 A2 A1 A0 we make a 4-bit parallel subtractors.

Full

Subtractor
B
A

Di

Bo

Bin

 A3 A2 A1 A0

 - B3 B2 B1 B0

Bo

Di

Bo

Di

half

Subtractor
B0

A0

Di

Bo

Bin

Full

Subtractor

Full

Subtractor

Bin

Bin

Bo

Di

Full

Subtractor

B1

A1

B2

A2

B3

A3

Output Difference

